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| Introduction

In this paper the finite clement method (FISM) is used in conjunction with the method of
moments (MoM) and the mode matching technique (MM) to calculate return losscs and
radiation patterns for axisymmetric waveguide fed hornis. The coupling of the FEM to the
MoM, on one band, and the coupling of the FEM to the MM, on the othier, arc performed by
using boundary integrals. Onc advantage of this approach is that it alows for the prescnce
of inhomogencous materials to be included in the modelling domain as this poses no special
problems for the IFIEM. In this respect, this method differs from the work of Berthon and
Bills [1] who usc only the MoM with a single waveguide mode serving as the excitation.

After describing the basic theory, the method is applied to the horn shown in Figure 1.
The two dimensional modelling domain for this horn, depicted inFigure 2, clearly shows
where the FIEM/MoM and the FEEM/MM boundary surfaces arc located. Comparisons of
measurcd and caculated far field radiation patterns andretur n loss arc then shown. It is
noted that this method generates asparce, diagonal] y dominant, complex-symmetric system
matrix which may be solved with standard library routines. Moreover, this FISM formulation
has been shown to be free of spurious solutions [2].

Il Theory

The system matrix for the problem is found by coupling waveguide modes (MM) to the
hybrid symmetric finite clment method (11SF1EM) as developed by 1 loppe, 15pp and Lee [3].
This coupling is cflected by the usc of two equations: the wave equation for the electric field
and the matching of the tangential electric field at the waveguide/FIEM interface. These
cquations, when enforced in a weak scnse, lead to
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respectively. If the test vectors in (1), w, arc chosen to be the set of finite element basis
functions and the test vectors in (2), u, arc chosen to be the set of waveguide mode vectors,
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it is seen that the surface integrals in the the 1,11S of (2) and the last term of the 1.11S of
(1) couple the FIEM to the MM at their cominon inter face. The following matrix equation
results:
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In this equation, the unknowns to be determined, C¥, €7, CM, and b represent the ampli-
tudes of the electric field within the FFISM region, the electric and magnetic surface currents
on the FEEM/MoM surface and the reflected waveguide mode cocflicients at the FEM/WG in-
terface, respectively. As noted in the introduction, the system matrix is complex-symmetric,
sparse and diagonally dominant.

1l Results

in this section, the mecthod outlined above is applied to the open-pipe horn antenna shown
in Figure 1. This horn was designed by Tom Otoshi of the Jet Propulsion Laboratory to be
used aboard the NASA CassiniSpacecrafl as a low gain antenna. The two frequencies of
operation of this horn arc 7.175 GHzand 8.425 GHz. The radiation is RCP. It features two
chokes to ensure operation in a balanced hybrid mode thus reducing cross polar radiation.

The finite clement region shown in IMigure 2 was meshed using approximately 35 (linear)
nodes pcr wavclengthat the highest frequency of simulation, 8.6 G] I«. Also, 8 waveguide
modes of azimuthal index, n = 1, were alowed to exist at the I'ISM /MM interface. This
unnecessarily high mesh density and large nuinber of waveguide modes was chosen in order
to guarantee that the solution obtained would alrcady have converged. The resultant system
matrix is of order h' = 5073.

IYigure 3 shows the calculated and mecasui cd return loss over a band of frequencies ex-
tending from 7.0 Gllzto 8.6 Glls. The mcasured return loss was not time gated and thus
includes the combined cflects of areflection duc to the horn witha reflection duc to a po-
larizer used to transition from rectangular to circular waveguide. Fortunately, this polarizer
is placed far enough away from the horn such that the higher order modes generated do not
couple into the horn. Note that there is a glitch in the incasured curve at 8.47 GHz. This is
duc to a7 Moimode which begins to propagatcat that frequency. Iinally, Figure 4 shows
the far ficld pattern at 8.425 Gllz. Good agrecement may be stated.
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Figure 1. Cassini Low Gain Antenna (1.GA2) horn.
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Figure 2. Computational domain.
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Figure 3. Measured and Calculated
return loss for Cassini LGA2.
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Figure 4. Far field pattern for Cassini.GA2 horn.

RCP excitation at 8.425 GHz.
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